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An energy approach for describing fatigue crack growth is developed on the basis of 
the following postulate [I]: A growing fatigue crack becomes nonequilibrium in the Griffith 
sense at least once in a loading cycle if resistance to crack growth is calculated with al- 
lowance for the damages accumulated during previous loading. This approach is extended to the 
case of a non-uniaxial stress state with the inclusion of the phenomena of arrest, irregular 
growth, rotation, and branching of cracks. The general structure of the equations for a cer- 
tain crack growth rate in a non-uniaxial stress state is discussed. 

I. Fatigue crack growth occurs under conditions of interaction of the crack with the 
process of accumulation of scattered damages in the material. In fact, there are grounds for 
suggesting that damage accumulation in front of cracks is the mainmechanism governing the 
fatigue crack growth rate. This notion has been expressed repeatedly in more or less exDlicit 
fashion (see, e.g., the survey articles in [2]). However, specific mathematical models based 
on this idea have been developed only for low-cycle fatigue-- a phenomenon into the descrip- 
tion of which the additional scale of length (size of the plastic zone) enters naturally. A 
survey and a critical discussion of these models can be found in [3]. Models of fatigue-crack 
growth which take into account the accumulation of dislocations at the front of cracks have 
also been proposed [4]. Usually, semi-empirical equations are used to describe fatigue-crack 
growth [5]. The present study elaborates on the model of high-cycle fatigue proposed in [i] 
and based on concepts of continuum mechanics. The model employs a generalization of the 
energy approach to fracture mechanics. 

We will refer to the state of a body with cracks as subequilibrium and as nonequilibrium 
after Griffith if the conditions 6I = 0, ~I < 0 and ~I > 0 are satisfied, respectively. Here, 
~I is the Griffith variation of the total energy of the body--load system [i] taken with the 
opposite sign. If the aggregate of cracks in the body is specified to within m generalized 
coordinates 11, ..., ~m (for example, characteristic dimensions of the cracks), then we can 
take the following for the expression of ~I 

J=l 

Here, Gj are the generalized forces advancing the cracks (analogs of liberated Irwin energy; 
Fj are generalized resistance forces (analogs of critical values of liberated energy). 

We will examine the process of cyclic loading of a body specified by a vector s(t). 
We will designat e the vector of the generalized coordinates l:, ..., Im as ~(t). We will use 
@(t) to represent the vector of the damages accumulated at the fronts of the cracks. For an 
undamaged material, ~ = O. We will formulate the postulate on fatigue crack growth as follows: 
A crack obtains an increment with respect to one of the generalized coordinates during a cycle 
if it becomes nonequilibrium with respect to this coordinate at least once during the cycle 
with the condition that the corresponding generalized resistance force is calculated with 
allowance for the damages accumulated during previous loading. 

For I analytical formulation of the postulate, let us examine a function of the values of 
the processes ~(t), s(t), and ~(t) on the segment (tn-~, tn] corresponding to the n-th cycle: 

Ilj(n)~ sup ~G~[l(t),s(t),~(t)]--rj[l(t),s(t),~(t)]} ( j = ~ l  . . . . .  n). ( 1 . 2 )  
t n _ _ l ~ . . < i n  - . 

When Hj (n) < 0, generalized coordinate ~j does not increase, and damage accumulation proceeds 
at the front of the stopped crack. When Hj (n) > O, this means that the crack becomes nonequi- 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 136-143, March-April, 1985. Original article submitted February 15, 1984. 

0021-8944/85/2602-0281509.50 �9 1985 Plenum Publishing Corporation 281 



"ffl , 

14 

O 

Fig. I 

librium at least once during the n-th cycle and, thus, unstable as well. The new dimension 
lj(tn) is found from the energy balance condition 

= (1.3) 
lj(tn-1) Zj(tn-1) . 

where ~(X, t) is the vector-function of the damages on the continuation of the front of the 
growing crack; tj* is the moment of time corresponding to attainment of the supremum in the 
right side of Eq. (1.2). On the crack fronts X = l(t). 

Equation (1.3) is applicable if the crack grows with respect to one of the generalized 
coordinates during a cycle. When growth occurs over several coordinates, it is sufficient to 
require that the dynamic processes decay during the intervals between adjacent moments of time 
tj* and tk*. If the newly found values correspond to a stable system of cracks lying within 
the body, then further growth is possible. For subsequent study, we will need to examine the 
signs of the function Hj(n + i), construct equations of type (1.3), etc. 

A typical pattern of fatigue crack growth consists of the following. After a sudden 
increase in crack size to the dimension lj(tn), it becomes subequilibrium due to the attain- 
ment by its front of a section with relatively little damage. Thus Hj(n + i) < 0. It is 
necessary to determine the number of cycles before which the subequilibrium condition will be 
violated. Then a sudden crack growth will occur again, etc. Thus, we arrive at a natural 
explanation for the stria on the surface of a fatigue fracture. 

To obtain a closed system of equations, it is necessary to take equations describing 
damage accumulation on the continuation of cracks. We will construct a finite-difference func- 
tional equation in the vector-function ~(X, t): 

~ t  n 

@-(~,, tn )_(#(L, tn_l ) = qo {~,, l ( t ) ,  s( t ) ,  ~(%, t)}. ( 1 . 4 )  
, t=tn-- I 

t 

Here, ~{'} is some specific functional of the loading history and damage accumulation on the 
segment of the n-th cycle. In describing high-cycle fatigue, the number of cycles n is usually 
treated as a continuous argument. If the load parameters change slowly in the transition from 
one cycle to another, then the vector-function s(t) can be replaced by the continuous vector- 
function s(n), the components of which include extreme values of the loading parameters and, 
if necessary, the frequency of the cycles. In this case, l(n) and ~(n) are also slowly chang- 
ing functions of n. Applying the mean-value theorem to (1.3), we arrive at the system of 

equations 

Gj[l(n), s(n), , ( n ) l  = r j [ ! (n) ,  s(n), $(n)]  (j = t . . . . .  m). ( 1 . 5 )  

This means that slowly growing fatigue cracks are almost no different from Griffith equilibrium 
cracks with allowance for the damages accumulated at their fronts [i]. In (1.5) 

~ ( n )  ------ (#|l(n), al,  ( 1 . 6 )  

while for the vector-function ~(X, n) instead of (1.4) we have the equation 

a~(L, n)/an =- (I)[~,, l(n), s(n), ~D(L, n)]. ( 1 . 7 )  
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When there are important changes in the loading process, such as with a sudden increase 
in the load of a change in the type of nominal stress state, it is necessary to revert to the 

more general equations (1.3-1.4). 

2. Let us examine a fatigue crack in an infinite body in a plane stress state with 

nominal stresses Ox, Oy, and ~xy (Fig. i). The crack length is 2~. We assume that the crack 
propagates without branching and rotations, i.e., its continuation (extension) lies on the Ox 
axis. Due to the symmetry of the problem, we will examine the crack as a single-parameter crack 
specified to within ~. Here, we are considering that except for the regions in which scattered 
damages have accumulated, the material has properties corresponding to linear~fraction mechan- 
ics. We find the generalized force from the Irwin formula [2] 

(2.1) 

ignoring the contribution of the regular components of the stress field to the liberated energy. 
We will also ignore the effect of the cumulative damages, so that G = G(~, o x, Txy). 

We will distinguish two damage measures, constituting the vector-function ~(~, t). The 
measure ~ x accounts for normal-rupture microcracks oriented along the Ox axis. These cracks 
are formed mainly as a result of the cyclic change in stresses Oy. The measure T= accounts 
for shear microcracks oriented in the same direction. The accumulation of these cracks is de- 
termined mainly by the magnitude of the shear stresses rxy; We will write the damage accumula- 
tion equations (1.4) in a form consistent with the semiempirical equations used to describe 

fatigue damages [6]: 

q)l (~ '  'n) ~I (~ '  ~n--1) = (Ac~ - -  Z&ff[;h) /(Sl I ,  ( 2 . 2 )  

(;., (x, %) - % .  '% 

Here ho(%, n) and AT(%, n) are the amplitudes of the rupture (tensile) and shear stresses, re- 

spectively, during the n-th cycle at a point lying on the crack extension; of and Tf are char- 
acteristics of the material describing its resistance to damage accumulation; hgth > 0, hTth 
0 are threshold values at which damages begin to accumulate; m~ and m2 are constant exponents. 
Equations (2.2) are satisfied when Ao >hOth, AT > hTth. If one of these inequalities is not 
satisfied, then the right side in the corresponding equation (2.2) must be set equal to zero. 

The dependence of the stresses c and T on the distance % -- I from the crack front should 
give finite values of the stress concentration factors on the front and describe an asymptotic 
approximation to the nominal stresses when % >> 7. Here, naturally, there should appear a cer- 
tain new length scale p << l, which is an important element of the theory being developed. 
The parameter 0 can take values from a wide range, beginning from the characteristic grain- 
boundary thickness to the characteristic grain size. We choose it so that the typical stress 
concentration factors on theboundaries have the order (~/p)i/=. This condition is satisfied 

by the following expressions 

= Kt[~hl~)]-i/~ , ~ =K2[~h2(~)]-i/~ ( 2 . 3 )  

w h e r e  t h e  f u n c t i o n s  hz 2(%) h a v e  t h e  f o r m  
=IXI2P' I ~ ,  ~ l + p ,  

hl,~ (~) (2.4) 
tZ l ,~p+ (~- - t - -p) (Z /~) ,  ~ >  t + p. 

The form factors X~,2 depend on the configuration of the crack front. 

In the case of high-cycle fatigue, the crack moves very slowly. This makes it possible 
to change over from Eqs. (2.2) to the continuous approximation. Here, we obtain the following 
equation for the damage in the structural element (Fig. 2) closest to the front 

d~l/dn = (AKI -- m i m 5Kth,1 ) / g h ~ ,  d,p,/dn (AK 2 "% ..... e " = -- AKLh'') /~h' (2 5) 

where we have used the notation for the amplitudes of the stress intensity factors hKi = Aoy 
(~Z)I/a and AK= = Arxy(~l) I/2. We also expressed characteristics of the resistance of the 

material to damage accumulation in terms of the stress intensity factors 

K]I = {~](KZlD)I/~' K]2 = ~(KZ2O)I/~' ( 2 . 6 )  

AKth,l ~--- h~Yth(~lp) 1/2, AKt%,2 = hrtl.(gX2p) 1/2. 
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For the generalized force F we have the relation 

r = r0g(*l, ,2), ( 2 .7 )  

where  Fo i s  t he  f o r c e  a s s o c i a t e d  w i t h  r e s i s t a n c e  t0  advance  o f  t he  c r a c k  i n t o  t he  undamaged 
m a t e r i a l ; P o  = 2To (Yo i s  t he  u n i t  f r a c t u r e  w o r k ) .  The f u n c t i o n  g (~1 ,  42) s h o u l d  s a t i s f y  t h e  
c o n d i t i o n s  g ( 0 ,  0) = l ,  g ( 1 ,  O) = g ( 0 ,  1) = O. T h i s  means t h a t  t h e  r e s i s t a n c e  to  c r a c k  ad -  
v a n c e v a n i s h e s  even  i f  o n l y  one o f  t h e  damage measu re s  r e a c h e s  t he  l i m i t i n g  v a l u e  of  u n i t y .  
Henceforth, we will examine the function 

g(*l, @2) = [1 -- (~ + ~2)r ~, (2 .8 )  

where  a > 0 ,  B > O. 

A q u a l i t a t i v e  p i c t u r e  o f  c r a c k  g rowth  i n  shown in  F i g .  3a,  where t he  r e l a t i o n  G(X) i s  
t a k e n  in  a c c o r d a n c e  w i t h  Eq. (2 .1 )  w i t h  maximum v a l u e s  o f  t he  nomina l  s t r e s s e s  i n d e p e n d e n t  of  
n.  The c r i t i c a l  ( a f t e r  G r i f f i t h )  c r a c k  s i z e  l ,  s a t i s f i e s  t he  c o n d i t i o n  G(X) = Fo. Le t  G < r 
a t  t he  b e g i n n i n g  of  t he  n - t h  c y c l e .  Damage a c c u m u l a t i o n  on a segment  o f  l e n g t h  / ( t n _ l )  K X 
/ ( t n - : )  + p o c c u r s  u n t i l  t h e  moment o f  t ime  t n ,  when t he  e q u a l i t y  G = P i s  r e a c h e d  on the  
f r o n t .  We f i n d  the  new d i m e n s i o n  / ( t n )  f rom c o n d i t i o n  ( 1 . 3 ) .  I t  c o r r e s p o n d s  to  e q u a l i t y  of  
t he  a r e a s  o f  t he  h a t c h e d  t r i a n g l e s  i n  F i g .  3. The i n c r e m e n t  i n  c r a c k  l e n g t h  A1 = / ( t  n) -- 
/ ( t n _ l )  > p. Then t he  p r o c e s s  i s  r e p e a t e d .  The f a t i g u e � 9  c r a c k  as a whole  becomes u n s t a b l e  
when t he  s i z e  / f ,  < l ,  i s  r e a c h e d ,  s i n c e  f o r  a l l  X > l f ,  we have  t he  i n e q u a l i t y  G > F. 

The s u p p o s i t i o n  t h a t  t he  s t r e s s e s  and damages w i t h i n  an e l emen t  of  t he  s i z e  p must  be 
t he  same i s  no t  o b l i g a t o r y .  This  i s  i l l i s t r a t e d  by F i g .  3b. Crack advance  o c c u r s  a t  t he  
moment t he  e q u a l i t y  G(h + p) = F i s  s a t i s f i e d .  

T o  a n a l y t i c a l l y  d e s c r i b e  t h i s  v a r i a n t ,  i t  i s s u f f i c i e n t  to  r e p l a c e  / ( t n - ~ )  by / ( t n _ ~ )  + 
p i n  ( 1 . 2 ) .  O b v i o u s l y ,  Eqs.  ( 1 . 5 )  f o r  q u a s i e q u i l i b r i u m  f a t i g u e  c r a c k  g rowth  r ema ins  the  
same. 

3. We will derive approximate differential equations describing slow crack growth. 
We will evaluate the duration of the intersection of the crack front by a segment of length 
p from the formula An ~ p(d//dn) -~ Ignoring the damages accumulated until the front reaches 
the structural element, we obtain 

~l.~(n ) = p(dl/dn)-l@ 1 2(n): (3 .1 )  

Here ,  t he  f u n c t i o n s  ~ , 2 ( n )  c o i n c i d e  w i t h  t h e  r i g h t  s i d e s  o f  Eqs.  ( 2 . 5 ) .  The q u a s i e q u i l i -  
b r ium c o n d i t i o ~  w i t h  a l l o w a n c e  f o r  ( 2 . 4 ) ,  ( 2 . 7 ) ,  ( 2 . 8 ) ,  and ( 3 . 1 ) ,  l e a d s  to  t h e  e q u a t i o n  

dl (AK1 hKth,1) /~11' + (AK2-- hKth,~) "/K]~ 2 (3.2) 

Here ,  K~ c = EFo(1 - - v 2 )  - ~ ,  i . e . ,  K:c  i s  t he  c r i t i c a l  v a l u e  o f  t he  s t r e s s  i n t e n s i t y  f a c t o r  f o r  
the  u n d a m a g e d m a t e r i a l .  I n  r e g a r d  to  a c l a s s i c a l  G r i f f i t h  c r a c k ,  an e q u a t i o n  of  t y p e  (3 .2 )  
i s  o b t a i n e d  on t he  b a s i s  of  t he  e n e r g y  a p p r o a c h  t a k e n  in  [ 1 ] .  

The form of  t he  r i g h t  s i d e  of  (3 .2 )  depends  c o n s i d e r a b l y  on t he  p a r t i c u l a r  a s s u m p t i o n s  
made w i t h  r e s p e c t  to  t h e  s t r u c t u r e  o f  t he  r i g h t  s i d e s  of  Eqs.  ( 2 .2 )  and ( 2 . 5 ) ,  a s  w e l l  as  on 
t he  form of  the  f u n c t i o n s  g ( ~ l ,  ~2) i n  Eq. ( 2 . 7 ) .  However,  t h e  s t r u c t u r e  o f  Eq. (3.2) r ema ins  
g e n e r a l ,  w i t h  a v e r y  b r o a d  r a n g e  o f  s u p p o s i t i o n s .  The n u m e r a t o r  i n  t he  r i g h t  s i d e  i s  d e t e r -  
mined by t he  r a t e  o f  a c c u m u l a t i o n  of  f a t i g u e  mic rodamages  a t  t he  c r a c k  f r o n t ,  w h i l e  t he  denom- 
i n a t o r  c o n t a i n s  the  r a t i o  o f  t he  maximum amount o f  r e l e a s e d  e n e r g y  to  i t s  c r i t i c a l  v a l u e  f o r  
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the undamaged material. The maximum of liberated energy corresponds to the condition of the 
supremum in (1.2). 

4. Rotations and branchings of fatigue,cracks are among the most difficult and least 
studied aspects of fracture mechanics. The empirical data on the direction of fatigue crack 
growth in a complex stress state is not completely clear and is often contradictory [7]. 
Fatigue cracks exhibit a tendency to branch and grow in a zig-zag manner even in uniaxial 
tension. A discussion of the problem can be found in [8-11]. The application of analytical 
methods to the problem of crack propagation is made difficult by the shortage of information 
on the stress distribution in the vicinity of cracks of complex configuration. One of the few 
exceptions here is the zig-zag crack. Stress intensity factors near small branches, i.e., 
when % -- ~ << ~, were calculated in [8, 9]. The most reliable data was obtained in [i0] using 
a fairly cumbersome analytical and computational approach. We will make use of this data to 
analyze the problem of rotations and branching of an initially planar crack (Fig. 4). 

For a crack the front of which can rotate through an angle G, where -m < 0 ~ ~, Eq. 
(1.5) takes the form 

~[l(n), s(n), O] = r[l(n), ~(n, O)]: ( 4 . 1 )  

Here, in regard to the above-examined model, the left side is taken to be independent: of ~(n), 
while the right side is independent of s(n). The generalized force G depends explicitly on 8, 
while the generalized force F depends on ~ through the damage measure @(n, O). We will cal- 
culate the left side of (4.1) from the Irwin formula (2.1) with allowance for the dependence 
of the stress intensity factor on the angle 8: 

G = [(I --v2)/E]i[K~f~(O) + K 2 ~ 0 ) ]  2 + [ K ~ ( 0 )  ~ K2f:2(0)12). ( 4 . 2 )  

Here, KI and K2 are the stress intensity factors with 6= O, i.e., determined in accordance with 
(2.1). Figure 5 shows graphs for the functions fjk(~) constructed using the data from [I0]. 
The nominal stresses Ox and the regular components of the stress field do not enter into (4.2), 
which is equivalent to some additional assumption corresponding to concepts in linear fracture 
mechanics. If the quantity K1fli(0) + K=fla(8) turns out to be negative, then it should be 
set equal to zero. 

To describe damages at the crack front, we generalize Eqs. (2.2). We will consider the 
dependence of damage measures ~:~ and ~ 2 on the angle ~. Here, we assume that an increment in 
the measure 9z depends on the amplitude Aoe of the rupture stress on an area inclined at the 
angle 8. For the increment of the measure ~=, we postulate similar dependences on the ampli- 
tuce ATrO of the shear stress on this area (see Fig. 4). From this 

~|. 
~, (~i o, t,,) - ~, (~, o, t~_, )  = ( A ~ o -  A~t~) ' / ~  , 

~2 (k' O, t,,) - -  ~2 (~' O, t . _ l )  = (A~rO - -  A~th)m=/v; 2. ( 4 . 3 )  

The characteristics of the material retain their former significance. For the stresses in the 
vicinity of the crack front, we take expressions consistent with Eqs. (2.3) and (2.4): 

285 



J ~2 

o,5 ~ o/~r 

Fig. 4 Fig. 5 

aO = [ Klg ,t(O) _~_ K2g12(O) ] [nhx(~ ) I - l / a ,  

Xr 0 = [Klg21(0 ) _[_ Keg22(O ) ] [~h2(~.) ] -1/2. 

We take the angle function gjk(8) in She form 

git = cos3 (0/2), gin = (3/2) cos (0/2) sin O, 
g2t ---- ( i /2) cos (0/~) sinO, ga2 - -  (i /2)(3 cos 0 - -  i)  cos (0/2). 

(4.4) 

(4.5) 

The graphs of functions (4.5) are similar to the graphs of the functions fjk(~) shown 
in Fig. 5. Moreover, with a relatively high degree of accuracy (the greatest error on the 
segment --~/2 ~ 8 ~ ~/2 is 10%), we can put fjk(O) ~ gjk(e). Angle functions (4.5) were taken 
from theWilliams formulas for the stress distribution near a two-dimensional mathematical 
slit [2, 5]. The stresses (4.4) coindice at I < ~ < I + p with the stresses calculated from 
the Williams formula if in the latter we take the polar radius r = p/2 (Fig. 6). Thus, the 
representation regarding the finiteness of the stresses at the front of a growing crack are 
consistent with the usual representations of linear fracture mechanics. 

For siowly growing cracks, with allowance for Eqs. (4.4) and the notation (2.6), Eqs. 
(4.3) take the form 

0* l /0n = [ ~ K l g l l  (0) + ~K2912 (0) -- ~Kth, l l~I /K/~ I, 
AK "'~21K ~ ( 4 . 6 )  OIp2/On ~ [[ AKlg21 (0) + AK2g22"(0 ) ] ~ ~h,2l 1 I2" 

The general representation (2.7) for the generalized resistance force F and its special 
case (2.8) remain unchanged, while the dependence on 0 enters implicitly through the solution 
of Eqs. (4.6). 

5. Let us discuss certain qualitative conclusions from the proposed theory. First we 
will examine a normal,rupture crack (Fig. 7). Let the material be such that only a normal- 
rupture microcrack facilitates the growth of a fatigue crack. Then in (4.6) we need to set 
Kf2 § ~, and in Place of (2.8) we take F = Fo(l -- ~)B. Slow quasiequilibrium growth of such 
a Crack is schematized in Fig. 7a. Curve 1 corresponds to the function G(0, n), calculated 
from Eq. (4.2). Curve i' corresponds to the function F(e, n). The growing crack differs 
little from a Griffith equilibrium crack. As it grows, the angular dependence of the general- 
ized force G(O, n) is described by curves 2 and 3, while that of the generalized force F(O, 
n) is described by curves 2' and 3' The direction of crack growth remains the same, i.e., 
it corresponds to the angle 0~ = O. 

The picture changes significantly if fatigue crack growth occurs as a result of the 
accumulation of shear microcracks (Fig. 7b). For the generalized force G(0, n), as before 
we have curve-l. We have curve i' for the generalized forces F(8, n). The GrJffith equi- 
librium condition is reached when O = • This means that the crack has a tendency to branch 
at these angles and to grow in a zig-zag manner at these angles. Incidentally, the proposed 
theory does not take into account~:the change in the stress and damage fields due to secondary 
rotation or branching of the crack. In the general case, the damages at the crack front are 
comprised of normal-rupture and shear microcracks, while the angular dependence of the func- 
tion F(e, n) has the form 2' in Fig. 7b. The conditions are close to equilibrium on the seg- 
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ment [-~=, 02]. This means that all of the directions from this segment are of roughly equal 
probability. Thus, the element of unpredictability in crack branching is explained to a con- 
siderable extent by the interaction of damage accumulation mechanisms, In this situation, 
the mathematical expectation of the angle of propagation <e> = 0. 

The case of a complex stress state is illustrated in Fig. 8. Let the crack initially 
grow as a normal-rupture crack. This corresponds to curves 1 and i'. Beginning with a cer- 
tain cycle, the character of the stress state changes: For example, cyclic tension is re- 
placed by cyclic shear. The angular dependence of the generalized force G(8, n) is shovm by 
curve 2 in Fig. 8a, Let the new loading regime be such that at first the crack remains sub- 
equilibrium. This continues until additional damages are accumulated at the front so that 
the angle function F(8, n) takes the form shown by curve 2 ~' The crack begins to grow at the 
angle 82 (in this example, Txy < 0). 

Figure 8b shows a situation in which the crack becomes a nonequilibrium crack after the 
change in stress state, i.e., there appears a segment (e'2, 8"=) on which H(8, n) = G(e, n~ -- 
F(O, n) > 0. Here, the crack grows in an abrupt manner, and it may even branch suddenly. The 
corresponding angles are distributed randomly on the segment (8~ 8"2). The main quantity 
which characterizes the probable angle distribution is the difference on the generalized forces 
H(8, n). It is natural to assume that the probability density f(8) has the form f{8) = const 
{i -- exp[--BH(0)]}, where B is some positive constant. The most probable direction is that in 
which the function H(O, n) reaches a maximum. We obtain similar results in the case when the 
stress level changes suddenly without a change in the stress state. For example, if the 
nominal stresses increase in normal rupture so that curve ! of the generalized force G(8, n) 
in Fig. 7a is replaced by curve 2, the angles of branching of the crack will be distributed 
of the segment (--8=, ~a), for which H(8, n) > 0. The most probable direction of crack propaga- 
tion corresponds to the angle <0> = O. 
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